

Scaling GNN Sampling on Large-Scale Graphs with io_uring

Qixuan Chen Yuhang Song Melissa Martinez Vasiliki Kalavri taliac@bu.edu yuhangs@bu.edu melimtz@bu.edu vkalavri@bu.edu

Graph Representation Learning and GNN Sampling

Datasets	#Nodes	#Edges	Size
Papers100M	111M	1.62B	70GB
Hyperlink	3.5B	128B	3.4TB
Facebook	1.4B	1T	8.5TB

Graph size may exceed main memory

Current Approaches and Limitations

<u>CPU-based</u> (MariusGNN, Ginex)

- Unnecessary I/O from loading full neighborhoods into memory
- Lower computation power than GPU
- High data movement overhead between memory and SSD

GPU-based

(NextDoor, gSampler) Constrained GPU memory

- Sampling competes with other tasks
- for GPU resources
- High computation cost

SSD-based

(In-situ SmartSSD, FlashGNN)

- Difficult to adopt widely across different hardware configurations
- Limited bandwidth compared to main memory

My proposal: Leverage modern storage APIs and high-bandwidth SSDs to perform sampling on larger-than-memory graphs

Create two indexes

done

CPU-Based Sampling System Accelerated by io_uring

Sampling billion-edge graph 1.5x faster than baseline Comparable with GPU-based Can process larger-thanmemory graphs